PERSPECTIVITY IN COMPLEMENTED MODULAR LATTICES AND REGULAR RINGS

CHRISTIAN HERRMANN

Abstract

Based on an analogue for systems of partial isomorphisms between lower sections in a complemented modular lattice we prove that principal right ideals $a R \cong b R$ in a (von Neumann) regular ring R are perspective if $a R \cap b R$ is of finite height in $L(R)$. This is applied to derive, for existence-varieties \mathcal{V} of regular rings, equivalence of unit-regularity and direct finiteness, both conceived as a property shared by all members of \mathcal{V}.

1. Introduction

(Von Neumann) regular rings R and complemented modular lattices are closely connected fields since the work of von Neumann cf. [19] with R one associates its lattice $L(R)$ of principal right ideals. Unit-quasi-inverses u of elements a (i.e. $a u a=a$) have been introduced by Ehrlich [4, 5], a ring being unit-regular if each element admits some unit-quasi-inverse (such rings are, in particular directly finite: $a b=1$ implies $b a=1$). Ehrlich also showed that a regular ring R is unitregular if and only if for all idempotents e, f one has $e R \cong f R$ implying $(1-e) R \cong(1-f) R$. Handelman [11] added further equivalent conditions, one of them being that $e R \cong f R$ implies $e R$ perspective to $f R$ in $L(R)$. Perspectivity, regularity, and unit-regularity of elements in general rings have been intensively studied, see e.g. [6, 16, 17, 18].

The purpose of the present note is to give a sufficient condition on $a R \cong b R$ in a regular ring R granting that $a R$ is perspective to $b R$ (and thus a to have a unit-quasi-inverse) and to show that this applies if $a R \cap b R$ is of finite height in $L(R)$.

Here, establishing perspectivity relies on calculations in $L(R)$, for convenience done in abstract complemented modular lattices endowed with a system of isomorphisms between lower sections requiring properties present in the case of isomorphisms induced by isomorphisms between principal right ideals. The principal result is a reduction process associating $e_{n+1} \leq e_{n}$ and $f_{n+1} \leq f_{n}$ with given e_{n}, f_{n} such that e_{n} is perspective to f_{n} (and so e_{0} perspective to f_{0}) if $e_{n+1} \cap f_{n+1}=e_{n} \cap f_{n}$
or if e_{n+1} is perspective to f_{n+1}. In \aleph_{0}-complete complemented modular lattices e_{0} is perspective to f_{0} if the meet of the e_{n} is perspective to the meet of the f_{n}.

If one considers regular rings endowed with an operation of quasiinversion, termination of this reduction process after n-steps can be captured by an identity. This is applied to study unit-regularity in the context of existence varieties \mathcal{V} of regular rings, that is, classes closed under homomorphic images, direct products, and regular subrings. It is shown that for such class unit-regularity is equivalent to direct finiteness, both considered as a property required for all members. (Compare this to the result of Baccella and Spinosa [2] that a semiartinian regular ring is unit-regular if and only if all its homomorphic images are directly finite.) Another property shown equivalent to unit-regularity is that \mathcal{V} does not contain nonartinian subdirectly irreducibles. Though, having \mathcal{V} generated by artinians is not sufficient for direct finiteness in view of the result, established by Goodearl, Menal, and Moncasi [8, Thm. 2.5], that free regular rings are residually artinian (and, according to Herrmann and Semenova [13, Cor. 14], even residually finite). Varieties of $*$-regular rings (with pseudo-inversion) generated by artinians have all members directly finite [14] (and may contain nonartinian simple members) but unit-regularity remains an open problem.

2. Complemented modular lattices

2.1. Preliminaries. We refer to Birkhoff [3] and von Neumann [19]. A lattice L is a set endowed with a partial order \leq such that any two elements a, b have infimum and supremum written as meet $a \cap b$ and join $a+b$. We also write $a b=a \cap b$ and apply the usual preference rules. All lattices to be considered will have smallest element 0 and greatest element 1.

For $u \leq v$ in L, the interval $[u, v]=\{x \mid u \leq x \leq v\}$ is again a lattice with the inherited partial order and operations. A lattice L is modular if

$$
b \leq a \Rightarrow a(b+c)=b+a c
$$

Then the maps $x \rightarrow x+b$ and $y \rightarrow a y$ are mutually inverse isomorphisms between $[a b, a]$ and $[b, b+a]$. An element u of a modular lattice L is neutral if $(u+x)(u+y)=u+x y$ for all $x, y \in L$; the set of neutral elements is a sublattice of L. An element a of a modular lattice L is of height d if some (equivalently: each) maximal chain in $[0, a]$ has length d, that is $d+1$-elements. For the following see [3, Ch. III Thm. 15].

Fact 1. In a modular lattice, the direct product $[a b, a] \times[a b, b]$ embeds into $[a b, a+b]$ via $(x, y) \mapsto x+y=(x+b)(y+a)$.

If $a b=0$ then we write $a+b=a \oplus b$. If $a \oplus b=1$ then b is a complement of a. A lattice L is complemented if each element admits some complement. If L is, in addition, modular then we speak of a CML. In a CML each interval $[u, v]$ is again a CML (within $[u, v]$, a complement of x is given by $y v+u=(y+u) v$ where $x \oplus y=1$ in $L)$.

In a CML, elements a, b are perspective, written as $a \sim b$, if they have a common complement; equivalently, $a \sim_{c} b$ for some c, the latter meaning that $a+b=a+c=b+c$ and $a b=a c=b c$. We write $a \approx_{c}$ if $a \sim_{c} b$ and $a b=0$; also $a \approx b$ if $a \approx_{c} b$ for some c. Applying Fact 1 one obtains the following.

Fact 2. In a modular lattice, if $a_{i} \sim_{c_{i}} b_{i}, i=1,2$ and $a_{1} b_{1} a_{2} b_{2} \geq$ $\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)$ then $a_{1}+b_{1} \sim_{c_{1}+c_{2}} a_{2}+b_{2}$.

Fact 3. In a modular lattice one has $a \sim b$ if and only if $x \sim y$ for some (equivalently: all) x, y such that $a=x \oplus a b$ and $b=y \oplus a b$, Moreover, one has $a \oplus y=a+b=b \oplus x$ for such x, y.

Proof. Observe that for such x, y one has $a y=a b y=0$ whence by modularity $a(x+y)=x$ and, similarly, $b x=0$ and $b(x+y)=y$. By modularity it follows that $a b(x+y)=0$. Now one has $a b+x+y=a+b$ so that the map $z \mapsto z+a b$ is an isomorphism of $[0, x+y]$ onto $[a b, a+b]$. Moreover, $a+y=a+a b+y=a+b$. Thus $a \oplus y=a+b$ and, similarly, $b \oplus x=a+b$.

2.2. Two lemmas on modular lattices.

Lemma 4. In a modular lattice, if $z=x \oplus y, w=u \oplus v$, and $z w=x u$ then $y v=0$. If, in addition, $x \sim u$ and $y \sim v$ then also $z \sim w$.

Proof. Clearly, $y v \leq y z w \leq y x=0$. Moreover, by modularity one has $(x+w) z=x+w z=x$ whence $(x+w) y=(x+w) z y=x y=0$ and, similarly, $(u+z) v=0$. Now, by Fact $1(x+w)(u+z)=x+u$ it follows $(y+v)(x+u)=(y+v)(x+w)(u+z)=[y(x+w)+$ $v)](u+z)=v(u+z)=0$ by modularity. In particular, this implies $x u(y+v)=0$ establishing the isomorphism $r \mapsto r+x u$ of $[0, y+v]$ onto $[x u, y+x u+v]$. Thus, if $y \sim v$ then one has also $y+x u \sim v+x u$. Assuming that, in addition, $x \sim u$ one derives $z \sim w$ by Fact 2 since $(x+u)(y+x u+v)=(x+u)(y+v)+x u=x u$.

Lemma 5. In modular lattice, $L, a \sim b$ and $d=(a+d)(b+d)$ jointly imply $a+d \sim b+d$.

Proof. Assume $a \sim_{c} b$ in L and let S denote the sublattice S generated by a, b, c, d. Let D_{2} and M_{3} denote the 2-element lattice and the height 2 lattice with 3 atoms, respectively. Obviously. S is also generated by c, and the two chains $a \leq a+d$ and $b \leq b+d$. Thus, by [12] S is a sub direct product of lattices D_{2}, M_{3}, and lattices M where (the images of) $a, a+d, b, b+d$ generate a boolean sublattice with $(a * b)(a+d)(b+d)=0$ and $a+d+b=1$ and where (the image of) c is a common complement of the "atoms" $d=(a+d)(b+d), a$, and b. Since also $a \sim_{c} b, M$ is easily seen to be trivial in both cases..

Thus, S is a subdirect product of factors D_{2} and M_{3}, only. Due to the given relations, in any of these factors the images of d and $a+b$ take value 0 or 1 , only; this means that $a+b$ and d are neutral elements of S. It follows, that $u=d(a+b)$ is neutral, too, whence $a \sim_{c} b$ implies $a+u \sim_{c+u} b+u$ and this in turn $a+d \sim_{c+d} b+d$ via the isomorphism of $[u, a+b]$ onto $[d, 1]$.
2.3. Partial isomorphisms and perspectivity. Motivated by the case where L is the lattice of principal right ideals of a regular ring, for any CML L we consider lattice isomorphisms $\alpha:[0, e] \rightarrow[0, f]$, shortly written as $\alpha: e \rightarrow f$. For $g=e \cap f$ one has both $\alpha^{-1}(g)$ and $\alpha(g)$ defined. If $e^{\prime} \leq e$ let $\alpha_{\mid e^{\prime}}$ denote the restriction of α to [$\left.0, e^{\prime}\right]$, that is $\alpha_{\mid e^{\prime}}: e^{\prime} \rightarrow f^{\prime}, f^{\prime}=\alpha\left(e^{\prime}\right)$.
Observation 6. $\alpha^{-1}(g) \cap \alpha(g) \leq g$ and equality holds if and only if $\alpha(g)=g$.
Proof. Clearly, $\alpha^{-1}(g) \cap \alpha(g) \leq \alpha^{-1}(f) \cap \alpha(e)=e \cap f=g$. Also, if $\alpha(g)=g$ then $\alpha^{-1}(g)=g$ whence $\alpha^{-1}(g) \cap \alpha(g)=g$. Conversely, if the latter holds then $g \leq \alpha(g)$ and $\alpha(g) \leq \alpha\left(\alpha^{-1}(g)\right)=g$ and it follows $g=\alpha(g)$.

We introduce a reduction process which yields perspectivity provided that it stops after finitely many steps. With $g=e \cap f$ one has $\alpha^{\#}$: $\alpha^{-1}(g) \rightarrow \alpha(g)$ defined by $\alpha^{\#}(x)=\alpha^{2}(x)$.

We consider admissible systems A of isomorphisms $\alpha: e \rightarrow f$ requiring the following axioms:
(A1) If $\alpha: e \rightarrow f$ is in A and $e^{\prime} \leq e$ then $\alpha_{\mid e^{\prime}}$ is in A.
(A2) If $\alpha: e \rightarrow f$ is in A and $e \cap f=0$ then $e \approx f$.
(A3) If $\alpha: e \rightarrow f$ is in A and $g=e \cap f$ then $\alpha^{\#}$ is in A.
Lemma 7. Consider $\alpha: e \rightarrow f$ in admissible A.
(i) If $\alpha(e \cap f)=e \cap f$ then $e \sim f$.
(ii) If $\alpha^{-1}(e \cap f) \sim \alpha(e \cap f)$ then $e \sim f$.

Proof. Let $g=e \cap f$. In (i) choose y so that $y \oplus g=e$ and put $v=\alpha(y)$. Then $f=\alpha(e)=\alpha(y \oplus g)=\alpha(y) \oplus \alpha(g)=v \oplus g$. With $x=u=g$ in Lemma 4 it follows $y v=0$ whence $y \sim v$ by axioms (A1) and (A2); moreover, $e \sim f$ by Lemma 4, again.
(ii): Put $x=g+\alpha^{-1}(g)$ and $u=g+\alpha(g)$, observe that $u=\alpha(x)$. Observe that $g \leq x \leq e$ and $g \leq u \leq f$ whence $x \cap u=g$. Thus, by hypothesis and Lemma 5 one has $x \sim u$. Choose y such that $y \oplus x=e$ and put $v:=\alpha(y)$. Then $f=\alpha(x \oplus y)=\alpha(x) \oplus v$ and we conclude $y \cap v=0$ by Lemma 4 whence $y \sim v$ by axioms (A1) and (A2); finally, $e \sim f$ by Lemma 4 .

Given $\alpha: e \rightarrow f$ in admissible A define, by induction, $\alpha_{0}=\alpha, e_{0}=e$, $f_{0}=f$ and $\alpha_{n+1}=\alpha_{n}^{\#}: e_{n+1} \rightarrow f_{n+1}$. Put $g_{n}=e_{n} \cap f_{n}$ and observe that $e_{n+1} \leq e_{n}$ and $f_{n+1} \leq f_{n}$ whence also $g_{n+1} \leq g_{n}$.
Theorem 8. Given a CML, L, an admissible system A of partial isomorphisms in L, and $\alpha: e \rightarrow f$ in A, one has $e \sim f$ provided that $e_{m} \sim f_{m}$ for some m. In particular, this applies if $\alpha_{m}\left(g_{m}\right)=g_{m}$ respectively $g_{m+1}=g_{m}$ for some m or if $e \cap f$ is of finite height in L.

Proof. If $e_{m} \sim f_{m}$ (which by (i) of Lemma 7 is the case if $\alpha_{m}\left(g_{m}\right)=g_{m}$) then $e_{m-1} \sim f_{m-1}$ by (ii) of Lemma 7 and it follows $e \sim f$ by induction. Now, assume $e \cap f$ of finite height in L. By Observation 6, $g_{m+1}<g_{m}$ unless $\alpha_{m}\left(g_{m}\right)=g_{m}$; thus, the latter has to occur for some m.

We now give for the case $g_{m+1}=g_{m}$ a proof with a single application of Lemma 5 , only. A sequence a_{0}, \ldots, a_{m} in a modular lattice is independent, if for all $n<m, a_{n} \sum_{n<k \leq m} a_{k}=0$; equivalently if $\left(\sum_{n \in I} a_{n}\right)\left(\sum_{n \in J} a_{n}\right)=0$ for all $I, J \subseteq\{0, \ldots, m\}$ such that $I \cap J=\emptyset$. Induction using Fact 2 yields the following.

Fact 9. In a modular lattice, if $a_{0}+b_{0}, a_{1}+b_{1}, \ldots, a_{m}+b_{m}$ is independent and $a_{n} \approx b_{n}$ for all $n \leq m$ then $\sum_{n \leq m} a_{n} \approx \sum_{n \leq m} b_{n}$.
Lemma 10. Consider $\alpha_{n}: e_{n} \rightarrow f_{n}$ and $g_{n}, n \leq m+1$ as above and, for $n \leq m, x_{n}$ such that $e_{n}=x_{n} \oplus\left(e_{n+1}+g_{n}\right)$ and $y_{n}=\alpha_{n}\left(x_{n}\right)$. Then the following hold.
(i) $f_{n}=y_{n} \oplus\left(g_{n}+f_{n+1}\right)$ and $\left(e_{k}+f_{k}\right)\left(x_{n}+y_{n}\right)=0$ for all $k>n$.
(ii) $x_{n} \approx y_{n}$ for all $n \leq m$.
(iii) $x_{0}, y_{0}, \ldots, x_{m}, y_{m}$ is an independent sequence.
(iv) $x:=\sum_{k \leq m} x_{k} \approx y:=\sum_{k \leq m} y_{k}$.
(v) If $g_{m}=g_{m+1}$ then $x+g_{0}=e_{0}, y+g_{o}=f_{0}$, and $e_{0} \sim f_{0}$.

Proof. Recall that $e_{n+1}=\alpha_{n}^{-1}\left(g_{n}\right) \leq e_{n}$ and $f_{n+1}=\alpha_{n}\left(g_{n}\right)=\alpha_{n}^{2}\left(e_{n+1}\right) \leq$ f_{n} and observe that $e_{n}=x_{n} \oplus\left(\alpha_{n}^{-1}\left(g_{n}\right)+g_{n}\right)$. It follows that $f_{n}=$
$\alpha_{n}\left(e_{n}\right)=y_{n} \oplus\left(g_{n}+\alpha_{n}\left(g_{n}\right)\right)=y_{n} \oplus\left(g_{n}+f_{n+1}\right)$ for $n \leq m$. Observe that $x_{n} y_{n} \leq e_{n} f_{n}=g_{n}$ whence $x_{n} y_{n} \leq x_{n} g_{n}=0$. Thus $x_{n} \approx y_{n}$ by axiom (A2).

Moreover, modularity yields $\left(e_{n+1}+f_{n+1}\right)\left(x_{n}+y_{n}\right) \leq\left(e_{n+1}+f_{n}\right)\left(x_{n}+\right.$ $\left.y_{n}\right)=\left(e_{n+1}+f_{n}\right) x_{n}+y_{n}=\left(e_{n+1}+f_{n}\right) e_{n} x_{n}+y_{n}=\left(e_{n+1}+f_{n} e_{n}\right) x_{n}+y_{n}=$ $\left(e_{n+1}+g_{n}\right) x_{n}+y_{n}=0+y_{n}=y_{n}$ and so $\left(e_{n+1}+f_{n+1}\right)\left(x_{n}+y_{n}\right)=\left(e_{n+1}+\right.$ $\left.f_{n+1}\right) y_{n}=\left(e_{n+1}+f_{n+1}\right) f_{n} y_{n}=\left(e_{n+1} f_{n}+f_{n+1}\right) y_{n} \leq\left(g_{n}+f_{n+1}\right) y_{n}=0$. It follows for all $n<m$

$$
\left(\sum_{n<k \leq m} x_{k}+y_{k}\right)\left(x_{n}+y_{n}\right) \leq\left(e_{n+1}+f_{n+1}\right)\left(x_{n}+y_{n}\right)=0
$$

proving (iii); (iv) follows by Fact 9. Dealing with (v), observe that $e_{m+1}=g_{m}$ whence $g_{0}+x_{m} \geq e_{m}$. Now, backward induction yields $g_{0}+\sum_{m \geq k \geq n} x_{k} \geq e_{n}$ for all $n \leq m$, whence $g_{0}+x=e_{0}$. Similarly, one has $g_{0}+y=f_{0}$ and it follows $e_{0} \sim f_{0}$ by Lemma 2 .
2.4. \aleph_{0}-complete complemented modular lattices. A CML is $\aleph_{0^{-}}$ complete if supremum $\sum_{n} a_{n}$ and infimum $\prod_{n} a_{n}$ exist for all families $\left(a_{n} \mid n<\omega\right)$. According to Amemiya and Halperin [1, Thm.9.5] any such is also \aleph_{0}-continuous, i.e. $b \sum_{n} a_{n}=\sum_{n} b a_{n}$ (resp. $b+\prod_{n} a_{n}=$ $\left.\prod_{n}\left(b+a_{n}\right)\right)$ if $\left(a_{n} \mid n<\omega\right)$ is upward (resp. downward) directed. A sequence $\left(a_{n} \mid n<\omega\right)$ is independent if each of its finite subsequences is independent.

Fact 11. In an \aleph_{0}-complete $C M L$, if $a_{0}+b_{0}, a_{1}+b_{1}, \ldots$ is independent and $a_{n} \approx b_{n}$ for all $n<\omega$ then $\sum_{n} a_{n} \approx \sum_{n} b_{n}$.

Proof. Suppose $a_{n} \approx_{c_{n}} b_{n}$ for $n<\omega$ and write $x_{n}^{+}=\sum_{m<n} x_{m}$ and $x_{\omega}=\sum_{n<\omega} x_{n}=\sum_{n<\omega} x_{n}^{+}$for any sequence x_{0}, x_{1}, \ldots By Fact 9 one has $a_{n}^{+} \approx_{c_{n}^{+}} b_{n}^{+}$for all n. Since sequences $x_{0}^{+}, x_{1}^{+}, \ldots$ are upward directed, \aleph_{0}-continuity yields $a_{\omega} b_{\omega}=\left(\sum_{n<\omega} a_{n}^{+}\right) b_{\omega}=\sum_{n<\omega} a_{n}^{+} b_{\omega}=$ $\sum_{n<\omega} a_{n}^{+} \sum_{m<\omega} b_{m}^{+}=\sum_{n<\omega} \sum_{m<\omega} a_{n}^{+} b_{m}^{+} \leq \sum_{n, m<\omega} a_{\max (n . m)}^{+} b_{\max (n, m)}^{+}=$ 0. By symmetry one obtains $a_{\omega} c_{\omega}=b_{\omega} c_{\omega}=0$ while $a_{\omega}+b_{\omega}=a_{\omega}+c_{\omega}=$ $b_{\omega}+c_{\omega}$ is obvious.

Theorem 12. Assume that $\alpha: e \rightarrow f$ is member of an admissible system A of partial isomorphisms of an \aleph_{0}-complete CML, L, and that $\prod_{n<\omega} e_{n} \sim \prod_{n<\omega} f_{n}$ for e_{n}, f_{n} defined as in Subsection 2.3. Then it follows that $e \sim f$ in L.

Proof. Given $\alpha: e \rightarrow f$ in A define $\alpha_{n}: e_{n} \rightarrow f_{n}$ as in Subsection 2.3 and $g_{n}=e_{n} f_{n}$. Put $e_{\infty}=\prod_{n} e_{n}, f_{\infty}=\prod_{n} f_{n}$, and $g_{\infty}=\prod_{n} g_{n}=$
$e_{\infty} f_{\infty}$ and recall that $e_{n+1}=\alpha_{n}^{-1}\left(g_{n}\right) \leq e_{n}$ and $f_{n+1}=\alpha_{n}\left(g_{n}\right)=$ $\alpha_{n}^{2}\left(e_{n+1}\right) \leq f_{n}$.

Choose x_{n} such that $e_{n}=x_{n} \oplus\left(e_{n+1}+g_{n}\right)$ and $y_{n}=\alpha_{n}\left(x_{n}\right)$. By Lemma 10 one has $f_{n}=\alpha_{n}\left(e_{n}\right)=y_{n} \oplus\left(g_{n}+f_{n+1}\right)$ and the sequence $x_{0}, y_{0}, x_{1}, y_{1}, \ldots$ is independent; thus, Fact 11 yields $x_{\omega} \approx y_{\omega}$ where $x_{\omega}=\sum_{n} x_{n}$ and $y_{\omega}=\sum_{n} y_{n}$. On the other hand, again by Lemma 10 and modularity,

$$
\left(e_{\infty}+f_{\infty}+\sum_{n<k \leq m} x_{k}+y_{k}\right)\left(x_{n}+y_{n}\right)=0 \text { for all } m>n
$$

that is $e_{\infty}+f_{\infty}, x_{0}+y_{0}, x_{1}+y_{1}, \ldots$ is an independent sequence, too. By hypothesis $e_{\infty} \sim f_{\infty}$ and in view of $\left(x_{\omega}+y_{\omega}\right)\left(e_{\infty}+f_{\infty}\right)=0$ Fact 2 applies to yield $x_{\omega}+e_{\infty} \sim y_{\omega}+f_{\infty}$.

Now $g+e_{n+1}+x_{\omega} \geq e_{n+1}+g_{n}+x_{n}=e_{n}$ and by induction it follows $g+e_{n}+x_{\omega}=e$ for all n. Thus, by \aleph_{0}-continuity one has $g+x_{\omega}+e_{\infty}=\prod_{n}\left(g+x_{\omega}+e_{n}\right)=e$. Similarly, one obtains $g+y_{\omega}+f_{\infty}=f$. Finally, $e \sim f$ follows by Lemma 5 .

3. Regular Rings

3.1. Preliminaries. A ring R (associative and with unit) is (von Neumann) regular if for each $a \in R$ there is a quasi-inverse or inner inverse $x \in R$ such that $a x a=a$; equivalently, every right (left) principal ideal is generated by an idempotent, see Goodearl [7] and Wehrung [20]. For a regular ring, R, the principal right ideals form a complemented sublattice $L(R)$ of the lattice of all right ideals; in particular, $L(R)$ is modular. For artinian R, the height of $L(R)$ is the length of R.

An element a of R is unit-regular if there is a unit $u \in R$, a unit-quasi-inverse, such that aua $=a . R$ is unit-regular if all its elements are unit-regular. Any such ring is directly finite (that is $a b=1$ implies $b a=1$), the converse not being true for regular rings, in general.

If e is an idempotent in a regular ring R, then the corner $e R e$ is a regular ring with unit e, a homomorphic image of the regular subring $e R e+(1-e) R(1-e)$ of R.

Idempotents e, f are Murray von Neumann equivalent if $e=y x$ and $f=x y$ for some x, y. For the following see e.g. Handelman [11].
(1) For any a there is a generalized or reflexive inverse b such that $a b a=a$ and $b a b=b$, e.g. $b=x a x$ where $a x a=a$. Then $a b$ and $b a$ are idempotents.
(2) e, f are idempotents and equivalent if and only if $e=b a$ and $f=a b$ for some a, b as in (1). Moreover, in this case $\omega_{a, b}(r)=a r$
defines an isomorphism $\omega_{a, b}: b R=e R \rightarrow a R=f R$ of right R modules with inverse $\omega_{b, a}$. It follows that $f a e=a$ and $e b f=b$.
(3) For idempotents e, f, every R-module isomorphism $\omega: e R \rightarrow$ $f R$ is as in (2) where $\omega(e)=a$ and $\omega^{-1}(f)=b$.
(4) If $e R \sim f R$ in $L(R)$ then $e R \cong f R$ as right R-modules. If $e R \cap f R=0$ then the converse holds, too.
(5) If c is another generalized inverse of a then $b R \sim c R$ (being complements of $\{x \in R \mid a x=0\}$) and $x \mapsto c a x$ is an isomorphism of $b R$ onto $c R$.
To prove (3), put $a=\omega(e)$ and $b=\omega^{-1}(f)$. Then one has $\omega(r)=$ $\omega(e r)=\omega(e) r=a r$ for $r \in e R$ and, similarly, $\omega^{-1}(s)=b s$ for $s \in f R$. Thus, $a b a=\omega(b a)=\omega\left(\omega^{-1}(a)\right)=a$ and, similarly, $b a b=b$.

A regular ring R is perspective if isomorphic direct summands of R_{R} are perspective in $L(R)$; equivalently, $a R$ is perspective to $b R$ for all $a R \cong b R$ - for a more general result see Mary [17, Thm.3.1].

Theorem 13. Handelman [11] A regular ring is unit-regular if and only if it is perspective.

An element a of R is stronlgy π-regular if there is n such that $a^{n} \in$ $a^{n+1} R \cap R a^{n+1}$. R is stronlgy π-regularif so are all its elements.
Theorem 14. Goodearl and Menal [10, Thm. 5.8]. Strongly π-regular regular rings are unit-regular.

In general rings, a strongly π-regular element is unit-regular provided all its powers are regular. For a detailed discussion and proofs see Khurana [15]
3.2. Perspectivity. The following "local version" of Handelman's Theorem should be well known.

Lemma 15. Given a generalized inverse b of a in a regular ring R one has idemptents $e=b a, f=a b$, and g such that $g R=e R \cap f R$. Now, the following are equivalent.
(i) $f R$ and $e R$ are perspective in $L(R)$.
(ii) For some (all) idempotents e^{\prime}, f^{\prime} such that $e^{\prime} R \oplus g R=e R$ and $f^{\prime} R \oplus g R=f R$ one has $e^{\prime} R \cong f^{\prime} R$.
(iii) For some (all) idempotents e^{\prime}, f^{\prime} such that $e^{\prime} R \oplus g R=e R$ and $f^{\prime} R \oplus g R=f R$ there is a unit u of R such that aua $=a$ and $e^{\prime} R \cong f^{\prime} R$ via ue ${ }^{\prime}$.

Proof. In view of (2) in the preceding subsection, $e=b a$ and $f=a b$ are idempotents. Consider e^{\prime}, f^{\prime} as in (ii) and (iii) and observe that such exist since $L(R)$ is complemented.

By Fact 3 we have $e^{\prime} R \cap f^{\prime} R=0$ and, moreover, $e R \sim f R$ if and only if $e^{\prime} R \sim f^{\prime} R$. By (4), the latter is equivalent to $e^{\prime} R \cong f^{\prime} R$. This proves that (i) is equivalent to (ii).

Now, assume (ii), in particular $f^{\prime} R \cong e^{\prime} R$ via some isomorphism ω^{\prime}. Choose an idempotent h such that $e R+f R=h R$. Then

$$
e R \oplus f^{\prime} R \oplus(1-h) R=R=f R \oplus e^{\prime} R \oplus(1-h) R
$$

again by Fact 3. In view of (2) define
$\omega(r+s+t)=\omega_{b, a}(r)+\omega^{\prime}(s)+t$ for $r \in f R, s \in e^{\prime} R$ and $t \in(1-h) R$
to obtain an automorphism of the right R-module $R=1 R$. By (3) there are u, v in R such that $\omega=\omega_{u, v}$; in particular, u is a unit and $v=u^{-1}$. Moreover, $u r=\omega_{b . a}(r)=b r$ for $r \in f R$, in particular $u a=b a=e$. Thus $a u a=a e=a$, proving that (ii) implies (iii).

Finally, assume (iii). Then $u^{-1} f^{\prime}=e^{\prime}$ whence $x \mapsto u x$ is an R module isomorphism of $e^{\prime} R$ onto $f^{\prime} R$ with inverse $y \mapsto u^{-1} y$. Thus, (ii) and (iii) are equivalent, too.

For $A, B \in L(R)$ and right module isomorphism $\omega: A \rightarrow B$ one has the induced lattice isomorphism $\omega_{L}:[0, A] \rightarrow[0, B]$. Let $A(R)$ denote the set of all these.

Lemma 16. $A(R)$ is an admissible system of partial isomorphisms of $L(R)$.

Proof. Consider $\omega: A \rightarrow B$ in $A(R)$ and observe that $\omega_{L}(X)=\omega(X)$ for all $X \leq A$. Thus, if $A^{\prime} \leq A$ in $L(R)$ then $\left(\omega_{\mid A^{\prime}}\right)_{L}:\left[0, A^{\prime}\right] \rightarrow\left[0, B^{\prime}\right]$ in $A(R)$ with $B^{\prime}=\omega\left(A^{\prime}\right) \leq B$, proving axiom (A1). Similarly, for $C=A \cap B, A^{\prime}=\omega^{-1}(C)$, and $B^{\prime}=\omega(C)$ one has $\omega_{L}^{\#}=\left(\omega_{\mid C} \circ \omega_{\mid A^{\prime}}\right)_{L}$ in $A(R)$, proving axiom (A3). Finally, (A2) follows from (4).

Corollary 17. For A, B in the lattice $L(R)$ of principal right ideals of the regular ring R, if $A \cap B$ is of finite height in $L(R)$ then A, B are perspective in $L(R)$ if and only if they are isomorphic as R-modules.

Proof. Assume $A \cap B$ of finite height. If $A \cong B$ then there is a lattice isomorphism $\alpha:[0, A] \rightarrow[0, B]$ in $A(R)$ and in view of Lemma 16 and Theorem 8 it follows that $A \sim B$. The converse follows from (4).

Corollary 18. An element a in a regular ring R is unit-regular provided that there is a reflexive inverse b of a such that $b R \cap a R$ is of finite height in $L(R)$.
3.3. Regular rings with operation of quasi-inversion. A regular ring may be considered as an algebraic structure also endowed with an operation $a \mapsto a^{\prime}$ of quasi-inversion. The class \mathcal{R} of all these structures is then defined by the identities for rings with unit together with $x x^{\prime} x=$ x. As observed above, the term $x^{+}=x^{\prime} x x^{\prime}$ then yields a generalized inverse a^{+}of a and $\gamma(x)=x x^{+}$yields idempotents $\gamma(a)$ such that $\gamma(a) R=a R$. For the following see Wehrung [20, Lemma 8-3.12].

Lemma 19. There are binary terms $x \vee y, x \wedge y$, and $x \ominus y$ in the language of \mathcal{R} such that, for all $R \in \mathcal{R}$ and $a, b \in R, a \vee b, a \wedge b$, and $a \ominus b$ are idempotent, $(a \vee b) R=a R+b R,(a \wedge b) R=a R \cap b R$, and $(a \ominus(a \wedge b)) R \oplus(a \wedge b) R=a R$.

Theorem 20. For each natural number n there are binary terms $t_{n}(x, y)$, $u_{n}(x, y)$, and $p_{n}(x, y)$ in the language of \mathcal{R} such that the following hold for all $R \in \mathcal{R}$ and mutually reflexive inverses $a, b \in R: t_{n}(a, b)$ is idempotent; moreover, if $t_{n+1}(a, b) t_{n}(a, b)=t_{n}(a, b)$ then
(i) $b R$ and $a R$ are perspective in $L(R): b R \sim_{p_{n}(a, b)} a R$:
(ii) $u_{n}(a, b)$ is a unit such that $a u_{n}(a, b) a=a$.

If R is of length at most $n+2$ then $t_{n+1}(a, b) t_{n}(a, b)=t_{n}(a . b)$ for all mutally reflexive inverses a, b in R.

Proof. With idempotents $e_{0}=b a$ and $f_{0}=a b$ one has the isomorphism $\omega_{a b}: e_{0} R \rightarrow f_{0}$ given by $x \mapsto a x$ inducing the isomorphism $\alpha=\alpha_{0}$: $[0, e R] \rightarrow[0, f R]$ given by $\alpha(x R)=a x R$ with inverse $\alpha^{-1}(x R)=b x R$. Recalling the construction in Subsection 2.3 put $g_{0}=e_{0} \wedge f_{0}$ and, recursively,

$$
g_{n}=e_{n} \wedge f_{n}, e_{n+1}=\gamma\left(b^{2^{n}} g_{n}\right), f_{n+1}=\gamma\left(a^{2^{n}} g_{n}\right)
$$

to obtain $\alpha_{n+1}:\left[0, e_{n+1} R\right] \rightarrow\left[0, f_{n+1} R\right]$ given by $\alpha_{n+1}(x R)=\alpha_{n}^{2}(x R)=$ $a^{2^{n}} x R$. Accordingly, put $t_{0}(x, y)=y x \wedge x x y$, and, inductively,

$$
t_{n+1}(x, y)=y^{2^{n}} t_{n}(x, y) \wedge x^{2^{n}} t_{n}(x, y)
$$

Thus, for a, b as above one has $t_{n}(a, b) R=g_{n} R=e_{n} R \cap f_{n} R$ whence

$$
t_{n+1}(a, b) t_{n}(a, b)=t_{n}(a . b) \Leftrightarrow g_{n+1} R=g_{n} R .
$$

Thus, supposing $t_{n+1}(a, b) t_{n}(a, b)=t_{n}(a, b), b R$ and $a R$ are perspective in $L(R)$ by Theorem 8 and Lemma 15 applies to provide the existence of a unit u in R such that aua $=a$ and idempotent $p \in R$ such that $b R \sim_{p R} a R$. To prove the existence of terms $u_{n}(x, y)$ and $p_{n}(x, y)$, as required, it suffices to observe that all this applies, in particular, to R being the free algebra in \mathcal{R} with generators a, b and relations $a b a=a$, $b a b=b$, and $t_{n+1}(a, b) t_{n}(a, b)=t_{n}(a, b)$.

Now, assume that $g_{k} \neq g_{k+1}$ for all $k \leq m$. Then one obtains a chain $e_{0} R+f_{0} R>e_{0} R>g_{0} R>\ldots>g_{m+1} R$ of length $m+3$ in $L(R)$. Thus, if r is of length at most $n+2$ then $g_{m}=g_{m+1}$ for some $m \leq n+2$ and it follows $g_{k}=g_{m}$ for all $k \geq m$, in particular $g_{n}=g_{m}=g_{n+1}$.

Example 21. (i) There are a, b, c in some unit-regular ring R such that a, b and a, c are pairs of reflexive inverses, $a R, b R$, and $c R$ pairwise perspective, $t_{n+1}(a, b) t_{n}(a, b) \neq t_{n}(a, b)$ for all n, and $t_{0}(a, c)=0$.
(ii) There are a regular ring R and reflexive inverses a, b in R such that $t_{0}(a, b)=0$ but both a and b are not strongly π-regular,

Proof. Considering (i) let V a vector space of dimension $n+3$. We show by induction that $\operatorname{End}(V)$ contains some a, b with associated $g_{n}>g_{n+1}$. More precisely, we show that for any subspaces $V_{1} \neq V_{2}$ of codimension 1 there is such a with generalized inverse a^{+}and restricting to an isomorphism $V_{1} \rightarrow V_{2}$ and such that $V_{1}=\operatorname{im} a^{+}$and $V_{2}=\operatorname{im} a$. If $n=0$ choose v_{i} such that $V_{1} \cap V_{2}=\operatorname{span} v_{3}$ and $V_{i}=\operatorname{span} v_{i}+V_{1} \cap V_{2}$ for $i=1,2$. Define the endomorphism a by $a\left(v_{1}\right)=v_{2}, a\left(v_{2}\right)=0$, and $a\left(v_{1}+v_{3}\right)=v_{3}$ and a^{+}by $a^{+}\left(v_{1}\right)=0, a^{+}\left(v_{2}\right)=v_{1}$, and $a^{+}\left(v_{3}\right)=v_{1}+v_{3}$. Proceeding from $n-1$ to n choose W of codimension 1 in V such that $V_{1} \cap V_{2} \nsubseteq W$ and put $W_{i}=W \cap V_{i}$. Choose endomorphisms a_{0}, a_{0}^{+}of W connecting W_{1} and W_{2} according to hypothesis. Choose $v_{3} \notin W$ and v_{i} such $V_{i}=\operatorname{span} v_{i}+W_{i}$ for $i=1,2$ and extend a_{0} and a_{0}^{+}to obtain a and a^{+}, defined for v_{i} as above.

By this construction there are finite dimensional $W_{n}=V_{n} \oplus U_{n}$ with reflexive inverses $a_{0 n}, b_{0 n}$ in V_{n} such that $t_{n+1}\left(a_{0 n}, b_{0 n}\right) t_{n}\left(a_{0 n}, b_{0 n}\right) \neq$ $t_{n}\left(a_{0 n}, b_{0 n}\right)$ and isomorphism $c_{0 n}: V_{n} \rightarrow U_{n}$. Choose a_{n} extending $a_{0 n}$ and $c_{0 n}^{-1}$, and b_{n}, c_{n} extending $b_{0 n}$ and $c_{0 n}$, respectively, such that $b_{n} \mid U_{n}=0$ and $c_{n} \mid U_{n}=0$. Then the direct product of the $\operatorname{End}\left(W_{n}\right)$ provides R and a, b, c as required.

In (ii) consider a vector space V with basis $v_{n}, w_{n}(n \in \mathbb{N}), R=$ $\operatorname{End}(V)$ and define $a\left(v_{n}\right)=w_{n}, a\left(w_{n}\right)=w_{n+1}, b\left(w_{n}\right)=v_{n}$, and $b\left(v_{n}\right)=$ v_{n+1}.
3.4. (Existence-)varieties of unit-regular rings. Observe that subrings of regular rings are not regular, in general, an obvious example being $\mathbb{Z} \subset \mathbb{Q}$. Thus, to deal with classes \mathcal{C} of regular rings in the framework of Universal Algebra, without specifying operations of quasi-inversion, it is convenient to introduce the class operator $\mathrm{S}_{\exists}(\mathcal{C})$ associating with \mathcal{C} the class of all regular rings which are subrings of members of \mathcal{C}. Referring to the usual operators H, P, and P_{u} for homomorphic images, direct products and ultraproducts (which preserve
regularity), a class \mathcal{V} of regular rings which is closed under under these operators is an existence-variety (cf. Hall [9] for this concept). For a class \mathcal{C} of regular rings let $\mathrm{T}(\mathcal{C})$ consist of all regular rings endowed with an operation of quasi-inversion (that is, members of \mathcal{R} as defined in the previous subsection) where the underlying ring is in \mathcal{C}. For the following see Propositions 7 and 10 and Theorem 16 of Herrmann and Semenova [13].

Fact 22. (i) The smallest existence variety $\bigvee_{\exists}(\mathcal{C})$ containing \mathcal{C} is $\mathrm{HS}_{\exists} \mathrm{P}(\mathcal{C})$.
(ii) $\mathcal{V}=\mathrm{S}_{\exists} \mathrm{P}\{R \in \mathcal{V} \mid R$ subdirectly irreducible $\}$ for any existence variety \mathcal{V}.
(iii) $R \in \mathrm{HS}_{\exists} \mathrm{P}_{u}(\mathcal{C})$ for every subdirectly irreducible $R \in \mathrm{~V}_{\exists}(\mathcal{C})$.
(iv) Any subdirectly irreducible regular ring R is an F-algebra for a suitable field F. Moreover, if such R is nonartinian then $\mathrm{V}_{\exists}(R)=\mathrm{V}_{\exists}\left\{F^{n \times n} \mid n<\omega\right\}$.
(v) $\mathrm{TV}_{\exists}(\mathcal{C})=\operatorname{HSPT}(\mathcal{C})$; in particular, any identity in the language of \mathcal{R} which is valid in $\mathrm{T}(\mathcal{C})$ is also valid in $\mathrm{TV}_{\exists}(\mathcal{C})$.

Define $t_{n}(x)=t_{n}\left(x, x^{+}\right)$.
Theorem 23. For an existence variety \mathcal{V} of regular rings the following are equivalent
(1) All members of \mathcal{V} are perspective.
(2) All members of \mathcal{V} are unit-regular.
(3) All subdirectly irreducible members of \mathcal{V} are directly finite.
(4) All subdirectly irreducible members of \mathcal{V} are artinian.
(5) There is $d<\omega$ such that all artinian subdirectly irreducible members of \mathcal{V} are of length $\leq d$.
(6) There are $d<\omega$ and and a class \mathcal{C} of artinian regular rings of length $\leq d$ such that $\mathcal{V}=\mathrm{V}_{\exists}(\mathcal{C})$.
(7) There is $n<\omega$ such that $t_{n+1}(x) t_{n}(x)=t_{n}(x)$ is valid in $\mathrm{T}(\mathcal{V})$.
(8) There is $m<\omega$ such that the idenkities $\left(x^{m+1}\right)\left(x^{m+1}\right)^{+} x^{m}=x^{m}$ and $x^{m}\left(x^{m+1}\right)^{+} x^{m+1}=x^{m}$ are valid in $\mathrm{T}(\mathcal{V})$.
Actually, given $d \geq 2$ one can choose $n=d-2$ and $m=d$.
Proof. (7) implies (1) by (i) of Theorem 8. (8) implies (1), too, in view of Theorem 14. (1) implies (2) by Theorem 13, and (2) implies (3).

Each of (3) and (4) implies (5): Indeed, assume that there are artinian subdirectly irreducibles $R_{n} \in \mathcal{V}$ with no bound on length. Renumbering and passing to corners and isomorphic copies, we may assume that $R_{n} \cong D_{n}^{n \times n}$ for some division ring D_{n}. Thus, for fixed m and all $n \geq m$, the ring R_{n} contains a subring $R_{m n} \cong D_{n}^{m \times m}$. Choose
$R_{m n}=0$ for $n<m$. Thus, in particular $R_{m n} \in \mathcal{V}$ for all m, n. Recall that, for fixed m, the class of all rings isomorphic to $D^{m \times m}$ for some division ring d can be finitely first order axiomatized if one adds m^{2} constants for a system of matrix units. Thus, choosing a nonprincipal ultrafilter \mathcal{F} on \mathbb{N} one has for any fixed m the ultraproduct $\left(\prod_{n \in \mathbb{N}} R_{m n}\right) / \mathcal{F}$ isomorphic to $D^{m \times m}$ where $D=\left(\prod_{n \in \mathbb{N}} D_{n}\right) / \mathcal{F}$. It follows $D^{m \times m} \in \mathcal{V}$ and thus $F^{m \times m} \in \mathcal{V}$ for all m where F is the prime subfield of D. Now, consider any infinite dimensional F-vector space W and $\operatorname{End}\left(W_{F}\right)$; the latter is subdirectly irreducible, nonartinian, and not directly finite. By Fact 22(iv) one has $\operatorname{End}\left(W_{F}\right) \in \mathcal{V}$ contradicting both (3) and (4).
(5) implies (4): Assume there is subdirectly irreducible $R \in \mathcal{V}$ which is not artinian. By Fact 22(iv), R is an F.algebra for some field F and $\mathcal{V} \supseteq \bigvee_{\exists}(R)=\bigvee_{\exists}\left\{F^{n \times n} \mid n<\omega\right\}$ so that the (subdirectly irreducible) $F^{n \times n} \in \mathcal{V}$ for all $n<\omega$, contradicting (5).
(5) implies (6): Since (5) implies (4), in view of Fact 22(ii) it follows that \mathcal{V} is generated by members of length $\leq d$.
(6) implies (7) and (8): Let \mathcal{R}_{d} consist of all artinian regular rings which are of length at most d. Thus, $\mathcal{V} \subseteq \mathrm{V}_{\exists}\left(\mathcal{R}_{d}\right)$. Now, consider subdirectly irreducible $R \in \mathrm{~V}_{\exists}\left(\mathcal{R}_{d}\right)$. By Fact 22(iii) one has $R \in$ $\mathrm{HS}_{\exists} \mathrm{P}_{u}\left(\mathcal{R}_{d}\right)$. Since the property of having length $\leq d$ can be expressed, easily, by a first order formula (in various ways), we have $\mathrm{P}_{u}\left(\mathcal{R}_{d}\right) \subseteq$ \mathcal{R}_{d} while $\mathrm{HS}_{\exists}\left(\mathcal{R}_{d}\right) \subseteq \mathcal{R}_{d}$ is obvious. This implies that $R \in \mathcal{R}_{d}$ whence $\mathcal{V} \subseteq \mathrm{V}_{\exists}\left(\mathcal{R}_{d}\right)$ by Fact 22(ii). By (ii) of Theorem 8 the identities $t_{n+1}(x) t_{n}(x)=t_{n}(x),\left(x^{m+1}\right)\left(x^{m+1}\right)^{+} x^{m}=x^{m}$, and $x^{m} x^{m}\left(x^{m+1}\right)^{+} x^{m+1}$ (where $n=d-2$ and $m=d$) are valid in $\mathrm{T}\left(\mathcal{R}_{d}\right)$ and so in $\mathrm{T}(\mathcal{V})$ by Fact 22(v).

References

[1] Amemiya, I. and Halperin, I.: Complemented modular lattices. Canadian J. Math. 11, 481-520 (1959)
[2] Baccella, G., Spinosa, L.: K_{0} of semiartinian von Neumann regular rings. Direct finiteness versus unit-regularity. Algebr. Represent. Theory 20 (2017), 1189-1213
[3] Birkhoff, G.: Lattice Theory. AMS Colloq.Publ. Vol. 25, Providence RI (1967)
[4] Ehrlich, G.: Unit-regular rings. Portugal. Math. 27, 209-212 (1968)
[5] Ehrlich, G.: Units and one-sided units in regular rings.Trans. Amer. Math. Soc. 216, 81-90 (1976)
[6] Garg, Sh., Grover, H. K., and Khurana, D.: Perspective rings. J. Algebra 415, 1-12 (2014)
[7] Goodearl, K.R.: Von Neumann Regular Rings, second edition, Krieger, Malabar (1991)
[8] Goodearl, K.R. Menal,P., and Moncasi,L.: Free and residually artinian regular rings, J. Algebra 156, 407-432 (1993)
[9] Hall, T.E.: Identities for existence varieties of regular semigroups, Bull. Austral. Math. Soc. 40, 59-77 (1989)
[10] Goodearl, K.R. Menal,P.: Stable range one for rings with many units, J. Pure Appl. Alg. 54, 261-287 (1988)
[11] Handelman, D.: Perspectivity and cancellation in regular rings. J. Algebra 48, 1-16 (1977)
[12] Herrmann. C., Kindermann, M., and Wille, R.: On modular lattices generated by $1+2+2$. Algebra Universalis 2, 243-251 (1975)
[13] Herrmann, C. and Semenova, M.: Existence varieties of regular rings and complemented modular lattices. J. Algebra 314, 235-251 (2007)
[14] Herrmann, C.: Direct finiteness of representable regular -rings. Algebra Universalis 80:1 Paper No. 3, 5 pp. (2019)
[15] Khurana, D.: Unit-regularity of regular nilpotent elements. Algebr. Represent. Theory 19 no. 3, 641644 (2016)
[16] Lee, T.-K.:Unit-regularity of elements in rings. J. Algebra Appl. 22 No. 6, Paper No. 2350135, 13 pp. (2023)
[17] Mary, X.: Special clean elements, perspective elements and perspective rings. J. Algebra Appl. 22 No. 4, Paper No. 2350090, 19 pp. (2023)
[18] Nielsen, P.P. and Šter, J.: Connections between unit-regularity, regularity, cleanness, and strong cleanness of elements and rings. Trans. Amer. Math. Soc. 370:3 1759-1782 (2018)
[19] von Neumann, J.: Continuous Geometry. Princeton University Press, Princeton, New Jersey (1960)
[20] Wehrung, F.: Congruences of lattices and ideals of rings. Lattice theory: special topics and applications. Vol. 1, 297-335, Birkhäuser/Springer, Cham (2014)

Technische Universität Darmstadt FB4, Schlossgartenstr. 7, 64289
Darmstadt, Germany
E-mail address: herrmann@mathematik.tu-darmstadt.de

